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Abstract

Consistency is a practical metric that evaluates an instru-
ment’s reliability based on its ability to yield the same output
when repeatedly given a particular input. Despite its broad
usage, little is understood about the feasibility of using con-
sistency as a measure of worker reliability in crowdwork. In
this paper, we explore the viability of measuring a worker’s
reliability by their ability to conform to themselves. We in-
troduce and describe Deja Vu, a mechanism for dynamically
generating task queues with consistency probes to measure
the consistency of workers who repeat the same task twice.
We present a study that utilizes Deja Vu to examine how
generic characteristics of the duplicate task — such as place-
ment, difficulty, and transformation — affect a workers task
consistency in the context of two unique object detection
tasks. Our findings provide insight into the design and use
of consistency-based reliability metrics.

Introduction
Quality control is a common and important challenge for
crowdsourced datasets. Due to their natural susceptibility
to workers performing a task incorrectly by accident or
with intent, a key objective for crowdsourcing systems is
identifying reliable workers. From simple majority-vote ap-
proaches to sophisticated machine-learning based models,
a broad range of techniques have been developed to man-
age the quality of crowdsourcing data, yet the topic has re-
mained at the forefront of concerns for both practitioners
and researchers of crowdsourcing alike (Ipeirotis, Provost,
and Wang 2010; Jung and Lease 2011). This raises a philo-
sophical question—what defines a “good” worker when no
objective measure of quality exists, and how do we leverage
alternative measures of worker quality to improve crowd-
sourcing results?

Consistency is a measure of reliability in many do-
mains, including healthcare (Chinn 1991), genomics (Mis-
ztal, Legarra, and Aguilar 2009), chemistry (Margolis and
Duewer 1996), pervasive computing (Henricksen, Indul-
ska, and Rakotonirainy 2002), machine learning (Rosten,
Porter, and Drummond 2010), and human-computer interac-
tion (Wilson et al. 2011; Hornbæk et al. 2014)). It evaluates
an instrument’s reliability based on its ability to yield the
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same output when repeatedly given a particular input un-
der the same constraints. Deterministic algorithms, for ex-
ample, can be described as consistent as they always pro-
duce the same output when given the same input. Despite its
widespread application, only a handful of crowdsourcing lit-
erature has examined the utility of consistency (Cheng, Tee-
van, and Bernstein 2015; Sun and Stolee 2016) as a reliabil-
ity metric, leaving many important questions unanswered:
To what extent are workers capable of performing tasks
consistently? How do characteristics of a repeated task af-
fect a worker’s consistency? Are consistency-based quality-
control procedures viable alternatives to traditional methods
of quality control?

In this paper, we explore the viability of measuring work-
ers’ reliability by their ability to generate the same response
for a pair of duplicate tasks, which we call a consistency
probe. First, we introduce Deja Vu, a mechanism for gener-
ating task queues with consistency probes to measure the
task consistency of workers. Next, we present and report
findings from an experiment to examine how certain char-
acteristics of the consistency probe — such as placement,
difficulty, and transformation — affect a workers task con-
sistency. The experiment is conducted in the context of two
object counting tasks that ask workers to locate a particular
type of object in a set of ten images. We conclude with a
discussion on the practicality of our findings and directions
for future work.

Related Work
Characterization of Worker Reliability
Consensus Consensus-based reliability metrics are among
the most common strategies for measuring worker reliabil-
ity. These measures are often driven by comparing worker
answers to consensus (e.g., majority vote), which assumes
the workers are equally reliable (Sheng, Provost, and Ipeiro-
tis 2008; Sheshadri and Lease 2013). One common prac-
tice here is to score and filter workers by the proximity
of their answer to the consensus (Ribeiro et al. 2011). Ex-
pectation Maximization (EM) algorithms go beyond the
naive assumption of a perfect crowd and assume that work-
ers have unknown errors that can be estimated simultane-
ously with ground truth (Dawid and Skene 1979; Demar-
tini, Difallah, and Cudré-Mauroux 2012; Ipeirotis, Provost,



and Wang 2010; Raykar and Yu 2012; Snow et al. 2008;
Whitehill et al. 2009). Prior work offers alternative ways to
weigh worker responses, including the use of Z-score from
information retrieval (Jung and Lease 2011) to more ad-
vanced Bayesian approaches that model other worker and
task characteristics, such as difficulty, approach to annota-
tion, and expertise (Welinder et al. 2010).

Behavioral Measures of Reliability Behavioral measures
capturing how workers perform tasks (e.g., task finger-
printing) consisting of cognitive and motor actions, have
been shown to approximate task performance and reliability
(Rzeszotarski and Kittur 2011). Interactions with interface
components critical to the task at hand have also been used
to measure worker reliability (Buchholz and Latorre 2011).
Such metrics have also been used to identify curbstoning
(i.e., falsification of survey data) (Birnbaum et al. 2013).

Consistency as as Measure of Reliabiliy Several prior
works in crowdsourcing have explored consistency—the
ability of a worker to conform to themselves when perform-
ing a task—as a measure of reliability. One study (Cheng,
Teevan, and Bernstein 2015) evaluated the consistency of 40
workers performing a set of tasks, including emotion map-
ping and image categorization, and found that consistency
between timed and untimed task variations could be a viable
substitute for ground-truth data in objective tasks. In the con-
text of online surveys, it was reported that 30% of the work-
ers, when given the exact same survey twice, submitted in-
consistent responses (Sun and Stolee 2016). Finally, Hata et
al. found that workers can maintain consistent answer qual-
ity over long periods of time (Hata et al. 2017).

Our work is distinct from prior work in that we study the
effects of characteristics of duplicate tasks and how they af-
fect the task consistency of workers. We are not aware of
prior work that has focused on either topic.

Effects of Task Characteristics on Reliability
Prior work has shown that various characteristics of a task
sequence can affect the way workers perform tasks including
task difficulty (Mao et al. 2013), contextual factors (Teevan,
Iqbal, and von Veh 2016), and task ordering (Cai, Iqbal, and
Teevan 2016). Other works (Chandler and Kapelner 2013;
Newell and Ruths 2016) have shown that workers output
can be strongly influenced by how the task is framed, ei-
ther through an explicit message or by manipulating the
content of preceding tasks. Closest to our work, Cheng et
al. compared the error-time curves of workers performing a
set of primitive tasks under two characterizations of quality,
namely internal consistency and between-subject variation
(Cheng, Teevan, and Bernstein 2015).

Deja Vu
Deja Vu is a mechanism for distributing calculated con-
sistency probes and yielding a consistency-based reliability
metric for a worker, composed of two components. The first
component is a task router that distributes tasks to workers.
The second component is a metric for assessing the quality

of workers based on the consistency of their output for du-
plicates. We discuss each of these components along with
the rationale behind their design in detail below.

Task Router
The Task Router component automatically constructs a
queue of tasks with consistency probes to capture the task
consistency of a worker. Formally, a consistency probe is
defined as a task-set containing an original task and its cor-
responding D duplicates. For the purpose of this study, we
only consider the simplest scenario in which there is only
one duplicate (i.e., D=1) following the original task; in prac-
tice, the original task can be followed by multiple duplicates
to accommodate more complex scenarios. Both the size of
the queue and the number of consistency probes can be spec-
ified by the managing requester.

Routing Dimensions
There are three dimensions of a consistency probe that can
be configured: placement, transformation, and difficulty.

Placement: The task router can systematically select where
the original task and its duplicates appear in the task queue.
As shown in Figure 1, placement can be specified using two
parameters:

• positionorig: the position of the original task

• offsetorig,dup: the number of tasks between the original and
duplicate task

Transformation: The task router can apply a transformation
to a duplicate task (i.e., flipping a image on the Y-axis).

• transform: the transformation applied to the duplicate task

Difficulty: The task router can, optionally, adjust the diffi-
culty of consistency probes by tuning three parameters:

• difficultydup: the difficulty of the duplicate task

• difficulty< orig: the average difficulty of the tasks before
the original task

• difficultyorig,dup: the average difficulty of the tasks between
the original task and the duplicate task

Each of the Difficulty parameters is bound by the availabil-
ity of information that can be used as proxies for task dif-
ficulty. For example, the difficulty of object counting tasks
can be approximated by the number of objects in the image.
In many cases, this information is initially unknown in the
context of crowdsourcing, and the parameters are therefore
not required for routing consistency probes.

As these parameters are the most basic dimensions that
describe tasks and how they are served to workers, the Deja
Vu task routing mechanism is task-agnostic and applicable
to any task routing scenario.

A Baseline Measure of Consistency
The second component of Deja Vu is a measure of consis-
tency. The simplest such measure is the absolute difference
between a worker’s outputs for the original task and its du-
plicate:



(a)
positionorig = 2 ; offsetorig,dup = 7

(b)
positionorig = 8 ; offsetorig,dup = 1

(c)
positionorig = 4 ; offsetorig,dup = 2

Figure 1: Task queues with varying Placement parameters.

outputorig,dup = |outputorig − outputdup| (1)

where outputorig is the output for the original task and
outputdup is the output for the duplicate. If outputorig,dup
equals zero, the worker is perfectly consistent while a non-
zero value indicates the worker is observably inconsistent.

Study Design
We conducted an experiment on Amazon Mechanical Turk1

to examine the ability of workers to yield consistent output
for a particular task. In this study, we vary the key parame-
ters for placement and transformation to determine how each
parameter affects the task consistency of workers, as mea-
sured by our baseline metric. The effects of difficulty are
examined post-hoc as task queues were generated randomly
to minic real-world crowdsourcing scenarios.

Task and Procedure
Object detection is among the most common types of com-
mercial and scientific crowdsourced tasks (Ipeirotis 2010;
Simpson, Page, and De Roure 2014), and recent work has
reinforced the importance of people in reliable methods for
object detection in images (Sarma et al. 2015) and computer
vision research (Forsyth and Ponce 2002). In this work, we
focus specifically on counting tasks, where the input is an ar-
tifact (e.g., an image) and the output is the count of a certain
object found in the artifact. While participants do annotate
objects in an image, the output of the task is limited to the
numeric count of an object as determining which object was
counted by comparing coordinates is challenging, particu-
larly when objects occlude one another (Sarma et al. 2015).

Our study focuses on counting tasks in two unique do-
mains: (1) counting flowers in images of Herbarium records
and (2) counting Greek taus in images of ancient papyrus
manuscripts. We refer to these tasks as the Flower task and
the Tau task respectively.

Figure 2 illustrates the counting interface for both tasks.
In the interface, users can locate and count objects in the
image by clicking on the image to make an annotation. As
each annotation is created or removed, the interface auto-
matically increments or decrements the count for the object
next to the object’s label to the right of the image. For the
purpose of this study, we assume that each image contained
at least one identifiable object for the task and structured the
the interface to prevent workers from submitting a task with
a reported count of zero. Both the annotation interface and

1https://www.mturk.com

the Deja Vu mechanism are implemented within the Crowd-
Curio research-oriented crowdsourcing platform2 (Law et al.
2013; Willis et al. 2017).

In order to quantify the difficulty of each image and study
participant accuracy, ground-truth counts for each task were
collected from experts or public datasets. For the Flower
task, four specialists with a background in biology, who are
currently employed at the herbarium of an R1 research in-
stitution, were recruited to locate the flowers in each herbar-
ium records. The median count of the recruited specialists
was taken as the ground-truth. For the Tau task, ground-truth
counts for each papyrus manuscript were retrieved from
published, peer-reviewed transcriptions (Society 1908).

For each task, participants were asked to report counts for
a series of 10 images. A dataset of 30 randomly-selected im-
ages with varying ground-truth counts, ranging from 2 to 88
objects in a single image, was used to generate task queues
for workers in each task. Task queues were generated by ran-
domly selecting 8 tasks from the dataset of 30 images. An
additional image was randomly selected from the remaining
22 images as a consistency probe and subsequently inserted
into the task queue at two particular locations. If specified,
a transformation was applied to the second instance of the
task selected as the probe.

All participants were recruited from Amazon Mechani-
cal Turk and paid $2.00 for completing the task. Before be-
ginning the task, workers were required to watch a training
video explaining how to use the interface to correctly per-
form the task. Additionally, workers were asked to complete
a pre-questionnaire that indicated experience relevant to the
task (i.e., familiarity with plant sciences or the Greek lan-
guage). The experiment concluded with a post-questionnaire
that first asked them if they realized they were given a du-
plicate image and to identify the duplicate if they believed
they had seen one. The post-questionnaire also included in-
cluded questions from the Intrinsic Motivation Inventory
(Ryan 1982) to assess workers’ enjoyment, effort, and com-
petence for the task.

Experimental Conditions
To investigate the effects of placement and transformation
on worker consistency, we created the following set of con-
ditions for each task, totaling in 8 conditions:

Low Offset, No Transformation Original and duplicate
task are separated by 1 task. No transformation applied
to the duplicate task.

2https://www.crowdcurio.com



(a) Counting flowers. (b) Counting Greek taus.

Figure 2: Annotation interface for counting objects.

Low Offset, Duplicate Flipped Original and duplicate
task are separated by 1 task. The duplicate is flipped on
the Y-axis.

High Offset, No Transformation Original and duplicate
task are separated by 6 tasks. No transformation applied
to the duplicate task.

High Offset, Duplicate Flipped Original and duplicate
task are separated by 6 tasks. The duplicate is flipped on
the Y-axis.

In all conditions, the duplicate tasks and the remaining 8
images in the task queue were chosen at random. While the
placement of the duplicate was controlled in each condition,
the arrangement of the 8 non-duplicate tasks was randomly
generated to eliminate ordering effects. In all conditions,
positionorig was assigned a value of 2, meaning the first in-
stance of the consistency probe occurred directly after the
first task. Therefore, our examination on the effects of place-
ment focuses entirely on offsetorig,dup. However, identifying
an optimal positionorig is a key direction of future work. As
the effects of placement and transformation are unknown,
we regard none of the 8 conditions as a baseline and focus
on reporting observable differences between the conditions.

Research Questions and Hypotheses
Our study aims to answer four research questions (Q1-Q4).

Q1: What is the relationship between consistency and the
placement of the duplicate? First, we hypothesized that con-
sistency improves as number of tasks between the original
task and duplicate task increases:

[H1] outputorig,dup increases as offsetorig,dup increases.

Q2: What is the relationship between consistency and diffi-
culty of the repeated task in the consistency probe? We hy-
pothesized that consistency decreases as difficulty increases:

[H2] outputorig,dup increases as difficultydup increases.

Q3: What is the relationship between consistency and ap-
plying a transformation to the duplicate task? We hypothe-
sized that consistency increases when a transformation (i.e.,
flipped on the Y-axis) is applied to the duplicate task:

[H3] outputorig,dup decreases when transform is applied.

Workers may, for example, accredit the presence of a dupli-
cate task to a systematic error, and may operate under the
assumption their data has already been collected for the du-
plicate task. A transformation may disguise the duplicate,
overcoming biases associated with performing a task twice.

Q4: What is the relationship between worker consistency
and recognition of the consistency probe? We hypothesized
that consistency decreases when the consistency probe is
recognized:

[H4] outputorig,dup increases when recognition occurs.

The intuition behind this hypothesis is that workers may re-
member prior answers. Alternatively, workers may recog-
nize the task as a retest for reliability and strategically game
the system.

Analysis Methods
In our study, the output of each task is the number of detec-
tions (i.e., counts) for flowers or taus reported by workers.
We used the number of detectable objects in the image as
a proxy for difficulty, and consider two scenarios: S1, when
actual difficulty of each task is known, i.e., can be deter-
mined based on expert (median) consensus count, and S2
the realistic scenario when the task difficulty is unknown,
but can be estimated based on worker consensus count.

Dependent Variables: In both S1 and S2, our simple con-
sistency metric outputorig,dup is the dependent variable.

Independent Variables: In S1, the independent variables
consist of the following: the number of tasks between the
original task and duplicate task (offsetorig,dup), a binary vari-
able representing whether the transformation was applied
to the image (transform), a binary variable representing
whether the worker noticed the duplicate task (Noticed), a
binary variable represent whether the worker was able to
correctly recall and identify the duplicate task (Identify), the
difficulty of the duplicate task (difficultydup), the average dif-
ficulty of the tasks before the duplicate (difficulty< orig), and
the difficulty of the tasks between the original and duplicate
task (difficultyorig,dup). In S2, the independent variables are



identical, but exclude the difficulty-related parameters as the
assumption is that ground-truth information is unavailable.
In both scenarios, we also considered two interaction terms
of interest: transform × Noticed and transform × Identify.

Statistical Methods: The dependent variable,
outputorig,dup, is an integer, which is typically modeled
using a log-linear (Poisson) regression model. However, as
illustrated by Figure 3, we observed that the distribution of
outputorig,dup is skewed toward zero, indicating that most
workers are capable of being perfectly consistent (i.e.,
outputorig,dup = 0). The excess observed zero counts could
cause ordinary Poisson models to poorly fit the data, and a
zero-inflated Poisson (ZIP) model would be more suitable
(Lambert 1992). Validating these concerns, Table 1 shows
the predictive performance of both types of models.

To account for the zero inflation caused by outputorig,dup,
the proposed ZIP models for both S1 and S2 specify per-
fect consistency as a binary random variable that depends
on offsetorig,dup, whereas outputorig,dup follows a Poisson dis-
tribution whose mean depends on all the independent vari-
ables as mentioned earlier. Each ZIP model used a logis-
tic model to describe the probability of perfect consistency,
and a Poisson regression to model the non-zero counts. Un-
der the Vuong Non-Nested hypothesis test (Vuong 1989),
all ZIP models are shown to be significantly better than the
corresponding ordinary Poisson regression model. The final
ZIP models were selected through the likelihood ratio test
(Wasserman 2003), which compares the models with and
without the interaction terms. Residual plots were checked
to ensure there was no clear violation of the model’s assump-
tions.

Figure 3: The distribution of outputorig,dup is highly skewed,
such that most workers exhibit a high degree of consistency
for both tasks (i.e., outputorig,dup = 0).

Results
A total of 402 workers were recruited through Amazon Me-
chanical Turk as participants for the study with approxi-
mately 50 workers assigned to each condition. On average,
workers who completed the Flower task finished each image
in 83.9 seconds (σ = 60.0) while workers who completed the
Tau task finished each image in 97.9 seconds (σ = 121.3). 14
workers (6 Flower; 8 Tau) were filtered for apparent spam-
mer behavior (i.e., reporting a count of 1 for each image).

General Observations Table 2 reports the results for the
ZIP models. The resulting models for both scenarios were
similar within each task, but differed between the two tasks.
Under the likelihood ratio test (Wasserman 2003), the mod-
els that contained only the main effect were sufficient for
the Flower task, whereas the models that include the inter-
action terms of interest were more appropriate for the Tau
task. This is not surprising since the tasks are different both
nature and necessary domain expertise, and hence, the effect
of the interaction terms differed.

Effects of Placement The effect of offset appeared to dif-
fer from task to task and from scenario to scenario in our
study. When the workers counted flowers, an increase in off-
set decreases consistency (i.e., increases outputorig,dup) sig-
nificantly, which agrees with H1. This negative impact on
consistency, although small, was consistent in both S1 and
S2. The similarity did not apply to the Tau-counting task:
when ground-truth was available, offset had no significant
effect. However, when ground truth was not available, an
increase in offset significantly increased consistency, which
is a complete opposite effect than than in the Flower task.
The difference may be surprising, but when the magnitudes
(β̂) were considered, we see that the positive and inverse
relationship between offset and consistency is very small
(< 0.1). Thus, the statistical significance we observe may
not be at all practical.

Effects of Difficulty Here, we restrict our analysis to only
S1 models, where the difficulty information is available. All
three measures of difficulty: difficultydup, difficulty< orig, and
difficultyorig,dup, were included into both S1 models. As hy-
pothesized in H2, the difficulty of the duplicate task showed
a significant inverse relationship with consistency in both

Scenario S1 S2
Task Flower Tau Flower Tau
Deviance over df 4.05 2.87 5.12 3.38
Observed Zero Counts 26 40 26 40

Regular Poisson regression model
Expected Zero Counts 5 15 2 11

ZIP regression model
Expected Zero Counts 25 40 26 40

Table 1: Both ordinary Poisson and zero-inflated Poisson
(ZIP) models were created for each scenario in each task.
The expected number of zero counts for the regular Poisson
regression model and the ZIP regression model are presented
for each task. The ZIP model expectations are closer to the
observed number of zero counts in all scenarios.



variable β̂ Std.Error t p

S1
offsetorig,dup 0.04 0.01 2.91 **
transform (No) 0.04 0.07 0.54
Noticed (No) -0.30 0.10 -2.86 **
Identify (No) 0.12 0.18 0.67
difficultydup 0.02 0.001 13.66 ***
difficulty< orig 0.002 0.002 1.12
difficultyorig,dup 0.01 0.002 2.82 **
transform (No) × Noticed (No) NA NA NA NA
transform(No) × Identify) (No) NA NA NA NA
S2
offsetorig,dup 0.06 0.01 4.53 ***
transform (No) 0.06 0.06 0.95
Noticed (No) -0.30 0.10 -2.96 **
Identify (No) 0.11 0.18 0.59
transform (No) × Noticed (No) NA NA NA NA
transform) (No) × Identify (No) NA NA NA NA

(a) Models for counting flowers.

variable β̂ Std.Error t p

S1
offsetorig,dup -0.02 0.02 -1.05
transform (No) -3.92 0.72 -5.47 ***
Noticed (No) -0.87 0.27 -3.21 **
Identify (No) -0.72 0.20 -3.70 ***
difficultydup 0.02 0.002 8.23 ***
difficulty< orig 0.00 0.003 -1.32
difficultyorig,dup 0.01 0.003 1.79 .
transform (No) × Noticed (No) 2.48 0.62 3.98 ***
transform (No) × Identify 1.32 0.52 2.56 *
S2
offsetorig,dup -0.07 0.02 -3.78 ***
transform (No) -4.53 0.71 -6.42 ***
Noticed (No) -0.81 0.26 -3.13 **
Identify (No) -1.35 0.17 -7.85 ***
transform (No) × Noticed (No) 2.49 0.60 4.14 ***
transform (No) × Identify (No) 2.03 0.48 4.19 ***

(b) Models for counting Greek taus.

Table 2: Zero-inflated Poisson (ZIP) regression models for counts for the Flower task and the Tau task. We report two models
for each object: one that includes task difficulty (defined as expert consensus) (S1) and one that does not (S2).

Flower and Tau tasks (i.e., as the difficulty of the duplicate
task increased, consistency decreased). Similarly, there was
strong evidence that an increase in the average difficulty of
the tasks in between the original and duplicate tasks also de-
creased consistency when the workers were counting flow-
ers. The same difficulty measures, however, had no signif-
icant impact on consistency among the workers who were
counting Greek taus.

Effects of Transformation The relationship between con-
sistency and applying a transformation to the duplicate task
is not as straightforward as hypothesized in H3. In both
scenarios considered, transformation had no significant ef-
fect on consistency when workers were counting flowers;
but workers who were assigned to the Tau task had signif-
icantly higher consistency when no transformation was ap-
plied to the duplicate tasks. The high consistency is not un-
expected as letters may appear differently and may be more
challenging to recognize than flowers when flipped on the
Y-axis. The effect of transformation remains insignificant
with or without the workers recognizing or identifying the
duplicates in the Flower task. In fact, the interaction terms
involving transformation had negligible contribution to the
variability of consistency measure. The interaction terms
showed strong significance in both models for the Tau task,
indicating the effect of transformation is dependent on work-
ers’ ability to recognize if there were a duplicate task, and
workers’ ability to correctly identify the duplicate. Further
discussion occurs in the next section.

Effects of Recognition and Recall 95% of the partici-
pants in the high-offset conditions self-reportedly did not
recognize the duplicate compared to 90% of the partici-
pants in the low-offset conditions. As shown in Table 2,
the ability to recognize that there were duplicates signifi-
cantly decreased consistency (i.e., increased outputorig,dup) in
all cases. This can be attributed to workers doubting their

initial count, or workers recognizing the task as a retest
for reliability and strategically gaming the system. There
is also strong evidence that the Tau-counting workers re-
member prior answers as the significant interaction term
(transform × Noticed) showed that when the image was not
transformed, the workers who recognized that there were
duplicates had significantly higher consistency (i.e., lower
outputorig,dup) than those who did not recognize the presence
of duplicates. The same argument can be applied to work-
ers’ ability to correctly recall and identify the duplicate task
when performing the Tau task: consistency decreases when
workers could identify the duplicated task. This finding does
not apply to the Flower task. Furthermore, when presented
with duplicates that were not transformed, the Tau-counting
workers who were able to identify the duplicates correctly
had significantly higher consistency, as shown by the signif-
icant interaction term transform× Identify. Recognition was
initially thought to be inversely related to consistency (H4),
but the results from our data set suggest this relationship de-
pends on the type of task and workers’ ability to recall and
recognize the tasks they performed.

Relationship between Consistency and Accuracy
The assumption behind consistency as a measure of reliabil-
ity is that a consistent worker is likely “good” worker who
produces high quality results. Here, we challenge this as-
sumption by analyzing the relationship between consistency
and accuracy.

Scoring Workers We represent each worker with two
scores. First, consistency score (i.e., outputorig,dup) measures
the distance between the worker’s reported counts for the
original and duplicate tasks. The second score, consensus
score, is the distance between the worker’s reported count
for an image and the median count from all workers who
processed that image (Ribeiro et al. 2011). Consensus meth-



ods, ranging from simple majority-vote approaches to so-
phisticated machine-learning based models, have become a
standard for ensuring data quality when true measures of
it are otherwise absent (Ipeirotis, Provost, and Wang 2010;
Jung and Lease 2011). We chose consensus as a point of
comparison because it is a frequently used proxy for relia-
bility. Finally, we define error as the absolute difference be-
tween reported count and ground truth count for an image.

Methods Various linear regression models were used to
model the relationship between error and both consensus
scores and consistency scores. Task difficulty and its inter-
action with the scores were also included in the respective
models to account for blocking effect and to improve esti-
mation. Similar to the ZIP models, we used separate linear
models for the Flower and Tau tasks and verified there were
no clear violations of the model’s assumptions by checking
the residual plots.

Results In general, both the relationship between error
and consensus, and between error and consistency differed
by task. Workers, who tend to agree with the majority, are
more accurate for both tasks (Flower: β̂ = 1.02, t(1767) =

58.59, p < 0.001; Tau: β̂ = 0.71, t(1767) = 4.11, p <
0.001). The interaction effects suggest that, given the same
consensus score, workers’ accuracy decreases significantly
when task difficulty level increases. Although consistent
workers showed significantly higher accuracy when count-
ing flowers (β̂ = 0.68, t(1767) = 9.42, p < 0.001), their
accuracy at counting Greek taus is not affected by their con-
sistency (β̂ = 0.04, t(1767) = 0.58, p = 0.56). Similar to
the effect of the consensus scores, given the same consis-
tency score, workers’ accuracy at the Flower task decreased
significantly when task difficulty level increased. The same
cannot be said for the Tau task.

Discussion

Consistency as a Measure of Reliability

Consistency—characterizing workers based on how well
they agree with themselves—can be an effective supplement
to existing measures of reliability. Our work contributes
to the design of consistency-based reliability measures by
studying the effects of task characteristics on worker consis-
tency. Alongside our examination of task characteristics, we
presented Deja Vu, a general and simple mechanism for con-
trolling the distribution of duplicate tasks and studying the
consistency of workers. Collectively, our work introduces
open questions on developing more complex consistency-
based metrics that take into account the nuanced effects
of factors that influence consistency, and machine learning
methods for statistically modeling consistency in workers.
Exploring consistency across other common types of crowd-
sourcing tasks, within complex crowdsourcing workflows,
and in worker populations that are intrinsically motivated to
participate (e.g., citizen scientists) are all important direc-
tions of future work.

Fatigue and Learning Effects
Our results show that the number of tasks between the orig-
inal and duplicate task (i.e., offsetorig,dup) may influence con-
sistency (i.e., outputorig,dup) in both tasks. One interpreta-
tion of these results is that learning can be influential fac-
tor for consistency. However, we provided both a training
video and referential material for detecting the objects dur-
ing the task, a standard practice that is thought to mitigate
such a learning curve (Doroudi et al. 2016). An alternative
interpretation of these results is that workers may become
fatigued and perform inadequately, which is supported by
prior literature in crowdwork (Chandler and Kapelner 2013;
Franklin et al. 2011; Rzeszotarski et al. 2013). As we only
examined task queues of one size, we cannot confidently
conclude this is the case.

Explanations aside, these findings collectively suggest
that a trade-off exists for determining when to route the orig-
inal task. Distributing the task before the worker has had
proper experience performing the task may facilitate experi-
ential learning until the duplicate has been dispatched. Con-
versely, the likelihood of worker experiencing fatigue and
exhaustion grows by delaying the presentation of the dupli-
cate. Prior work (Bragg, Mausam, and Weld 2016) has ad-
dressed the problem of scheduling validation tasks for main-
taining data quality, but not in the context of performing the
same task again. A promising direction for future work is to
develop a solution that optimizes the learning-fatigue trade-
off in routing duplicate tasks.

Recognition and Carryover Effects
Our results show that both the recognition and the transfor-
mation of the duplicate had a strong effect on consistency,
indicating the possible presence of the carryover effect (i.e.,
remembering the answer from the original task). If malicious
workers are able to identify a duplicate, they may shift their
strategy—realizing that they have already passed the consis-
tency test, they may complete the remainder of the tasks in
a hurry, without due attention to quality. As our results sug-
gest the transformation had a significant effect for only one
of the studied tasks, future research can investigate the in-
fluence of carryover effects on worker consistency, develop
additional methods for transforming and obfuscating the du-
plicate task (e.g., blurring part of an image), and better un-
derstand recognition in the context of larger task queue sizes.

Limitations
Our work is grounded in object counting tasks within two,
unique domains where workers were given task queues in
limited length. Our study did not examine the effects of con-
sistency in larger task queue sizes, nor does it draw conclu-
sions related to other, more complex task types. Our work
also studied consistency in the narrow context of probes with
a only single duplicate. Our work does not study the ad-
vantages and disadvantages of assessing worker consistency
with a larger number of duplicates in worker task queues.
However, we regard these topics as important and necessary
directions of future work for informing the design and estab-
lishment of consistency-based reliability metrics in crowd-
work.



Conclusion
Consistency can be a powerful supplement to traditional
quality control methods. In this work, we introduced Deja
Vu, a mechanism for routing duplicate tasks and assessing
workers based on their ability to complete duplicate tasks
consistently. We presented findings from an experiment that
showed how the duplicate’s difficulty, position, and trans-
formation affect worker consistency in two, unique counting
tasks. Future work includes investigating consistency as a re-
liability metric in other contexts, developing more complex
metrics and investigating machine learning techniques for
modeling consistency, understanding how consistency can
be measured within complex workflows (i.e., hierarchical
tasks), and studying other factors (i.e., carryover effects) that
may affect consistency.
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