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Abstract—The central dogma of handwritten character recognition
remains inextricably linked to optical character recognition methods
for print media. Alongside their reliance on proprietary data and lack
of open-access software, the applicability of these optical charac-
ter recognition methods to handwritten characters from low-quality
documents (e.g., that are damaged) remains unknown. In this paper,
we compare and contrast the performance of state-of-the-art optical
character recognition tools for print and learning models engineered
with state-of-the-art machine learning toolkits trained on handwritten
inputs. Using Tesseract OCR as a baseline, we build, optimize, and
evaluate three types of convolutional neural networks that are trained
on the AL-ALL and AL-PUB datasets, a collection of images of
handwritten ancient Greek characters that were labeled by volunteers
through the Ancient Lives online citizen science project. We find
our best-performing machine learning model to be 92.57% accurate
compared to Tesseract OCR’s 11.15%. Following our analysis, we
present a brief examination of our models’ shortcomings, introduce
the publicly-available AL-PUB dataset, and, describe Theia, a web-
based tool that democratizes our machine learning models for public
use. We conclude by discussing the promise of our findings for ad-
vancing research at the intersection of machine learning, manuscript
transcription, and the digital humanities.

Keywords—Ancient Greek; character transcription; machine learn-
ing; papyrology; crowdsourcing; citizen science; dataset.

I. INTRODUCTION

LABELED datasets of handwritten digits and characters,
such as MNIST, have been critical in advancing the

field of machine learning over the past three decades [1],
[2], [3]. Within the past few years, studies have continued
to acknowledge the relevance of such datasets with particular
interests in extending them (e.g. from digits to letters [4]).
When data is unavailable, character recognition researchers
are generally required to create their own datasets [5], which
can often be costly in terms of time, effort, and money. Today,
the number of openly available datasets remains significantly
limited in quantity despite their growing demand, particularly
in cultural heritage contexts [6], [7].

Over the past decade, one cost-effective and increasingly
common method of data collection is crowdsourcing, in which
a gold standard label is generated by multiple annotators [8].
Despite being generally cost-effective, the use of multiple
annotators often results in a set of noisy labels that are non-
uniform and maintain some level of disagreement. Such noise
has been shown to heavily influence a dataset’s utility in

Fig. 1: An example from the Oxyrhynchus papyri collection.

machine learning contexts [9], [10], [11], and research has
therefore given significant attention to engineering techniques
to mitigate noise by various statistical measures [12], [13],
[14]. Other approaches have simply thrown out the noisy labels
altogether [15]. Modern datasets (e.g. MNIST) generally fail to
reflect the reality that crowdsourced data is not only imperfect,
but so large in magnitude that identifying annotator errors is
both challenging and time-consuming in task settings in which
a ground truth label may be ambiguous. One such example is
transcribing the deteriorated papyrus manuscript in Figure 1.

In this paper, we compare and contrast the effectiveness
of a state-of-the-art optical character recognition tool (i.e.,
Tesseract) to a set of novel machine learning approaches that
share the task of classifying handwritten character images. Our
approaches are fueled by the Ancient Lives dataset, a collection
of digitized images of handwritten ancient Greek characters
that are the product of the Ancient Lives crowdsourcing
initiative in which volunteers annotated digital images of
ancient papyrus manuscripts. We first present a novel cropping
algorithm that isolates and extracts each character in each
manuscript into independent and labeled image files. Using
the Ancient Lives dataset as source material, we establish
two ancient Greek character image datasets: (1) AL-ALL
and (2) AL-PUB. We use these two datasets to train three
unique machine learning models and compare their effective-
ness against the Tesseract OCR tool. We find that all three
model approaches perform more effectively than Tesseract,
with our best-performing model achieving an accuracy of
92.73%. Following an analysis of our results, we conduct



Fig. 2: A visual representation of our contributions and how they build on prior work.

an audit of misclassifications across our model and introduce
Theia, a web interface that allows nonexperts (e.g., in the
humanities) to utilize our classification models without the
need for expertise. We conclude with a discussion on our
findings and their implications for research at the intersec-
tion of machine learning, citizen science, noisy labeling, and
handwritten character recognition in cultural heritage contexts.

II. RELATED LITERATURE

A. Handwritten Character Recognition
For more than three decades, advances in handwritten char-

acter recognition have relied substantially on publicly available
datasets. Amid the range of datasets, the most common charac-
ter recognition dataset to date is MNIST1, a dataset of 70,000
images of handwritten digits written by high school students
and employees of the United State Census Bureau. The dataset
has served as a focal point of application, education, and
extension in machine learning [4]. Following the widespread
usage of MNIST, a myriad of character recognition datasets
have been collected and made publicly available, such as those
that focus on handwriting in multiple languages [16], [17],
[18], symbols [19], [20], or noisy handwriting [21].

B. Crowdsourcing and Noise Labelers
Crowdsourcing is an exceptionally popular technique for

building datasets both in and beyond computer vision. As a
by-product of engaging labelers of varying backgrounds, ex-
pertise, and personal characteristics, crowdsourcing research is
often concerned with techniques for managing noisy labels [9],
[10], [11]. Controlled studies have, for example, focused sub-
stantially on the development of characterizing the reliability
of annotators, particularly in cultural heritage projects where
finances (i.e., for labeling) are often very limited [14]. To
mitigate the concerns around cost and reliability, humanities-
oriented transcription projects, such as Old Weather [22] and
Operation War Diary [23], generally rely on volunteers who
are intrinsically motivated to participate in labeling as opposed
to other types of labelers who are extrinsically motivated (e.g.
Amazon Mechanical Turk workers) [24]. Despite the sus-
tained use of crowdsourcing for data collection in manuscript
contexts, handwritten character recognition datasets remain
relatively limited within the purview of ancient manuscripts,
alongside the digital humanities at large.

1https://en.wikipedia.org/wiki/MNIST database

C. Crowdsourcing Manuscript Transcription

Enlisting the help of the public, either through monetary
or voluntary means, has been a growing topic of interest for
the digital humanities in recent years. Many such projects are
geared toward the production of digital transcriptions that are
of interest both to archival repositories and to scholars working
on critical editions. Transcribe Bentham [25], for example, is
a long-running and thriving project that enlists the help of
the public to transcribe the journal pages of Jeremy Bentham.
Beyond the task of document transcription, newer projects,
such as Ancient Lives and Scribes of the Cairo Geniza,
employ their crowdsourced transcriptions to identify or simply
contextualize unstudied manuscripts [26], which may require
specialized computational pipelines for data processing and
preparation [27]. The popularity of this kind of research is
evidenced by the rise of platforms dedicated to hosting projects
for archives, libraries, and museums since 2010, most notably
the Zooniverse citizen science platform [28], the From the
Page platform [29], and the SciFrabric / Pybossa platform
[30]. While crowdsourced manuscript transcription efforts and
initiatives have risen in popularity, the public availability and
re-use of crowdsourced transcription data from these projects
has yet to become the norm.

D. Contribution

This paper makes several contributions, each of which
expands on the prior literature in a unique way. First, we
contribute a novel cropping algorithm that extracts individual
character images from manuscript images using crowdsourced
data. Second, we introduce two datasets of ancient Greek
character images, one of which is made publicly available
for re-use and replicability among the digital humanities,
computer vision, and machine learning communities. Third,
we design, implement, and optimize three machine learning
modelling approaches that are trained with state-of-the-art ma-
chine learning toolkits. Alongside these models, we contribute
an evaluation of these models, focusing specifically on their
ability to classify ancient Greek characters in comparison to
a state-of-the-art OCR tool. Our final contribution is Theia,
a web interface tool that allows nonexperts to utilize our
machine learning models with their own character images. An
overview of our contributions is shown in Figure 2.



Fig. 3: The Ancient Lives interface.

III. ANCIENT LIVES

Ancient Lives was a web-based citizen science project that
was launched in June 2011 in coordination with the Zooniverse
[28] and concluded in June 2018. Through the internet, the
project enlisted the help of volunteers from across the world to
transcribe deteriorated ancient Greek papyrus fragments (i.e.,
remnants of a larger manuscript). All 12,070 papyri fragments
that were transcribed via the Ancient Lives system belonged
to the family of the Oxyrhynchus papyri, an established
collection of ancient Greek papyrus manuscripts discovered
in the ancient Egyptian city of Oxyrhynchus [31], [32], [33].

A. Task Interface

Counter to most citizen science projects for transcription,
Ancient Lives’s task interface treats a transcription event as
an object detection process. Users are asked to transcribe each
fragment by finding one letter at a time. At the beginning of
a task, users are presented with a papyrus fragment along
with a virtual keyboard that allows the user to customize
their transcription experience (e.g., change annotation color).
Annotations can be added to the interface simply by clicking
on the image. An annotation’s position can be updated at
any time by clicking and dragging the UI element to a new
location. Once an annotation is created, a user can assign
a letter to the annotation, or update the annotation’s letter,
by clicking on the appropriate letter on the virtual keyboard.
When a user hovered over any key on the virtual keyboard,
two example images of the Greek letter or symbol were shown
on the top-left panel of the keyboard. Lastly, users are given
a mini-map to show the field-of-view of the papyrus fragment
being viewed. Users can change their field-of-view of the
image by clicking and dragging on either the mini-map or the

Fig. 4: Examples of each character in the dataset.

image itself. The interface enforced no constraints about how
(e.g. in what order) letters or symbols should be annotated.
The interface is shown in Figure 3.

B. Processing Pipeline & Data Quality

To organize and collate the wealth of annotation data,
an existing computational pipeline developed by Williams
et al. [27] was leveraged. The pipeline implements several
algorithms that facilitate the processes of (1) aggregating
letter annotations into consensus annotations and (2) creating
“chains” of letter annotations to create strings of text.

In the creation of the dataset at hand, the team only makes
use of (1) as the research is limited to individual characters.
The quality of the data produced through the pipeline’s pro-
cedure has been vetted [27], and the Ancient Lives data itself
has been used toward several other contexts (e.g., deteriorated
manuscript identification [26]).



Character Count Character Count
Alpha (A,α) 42,538 Nu (N, ν) 44,896
Beta (B, β) 2,534 Xi (Ξ, ξ) 1,201
Gamma (Γ, γ) 6,907 Omicron (O, o) 46,334
Delta (∆, δ) 11,716 Pi (Π, π) 17,112
Epsilon (E, ε) 31,581 Rho (P, ρ) 20,448
Zeta (Z, ζ) 1,425 Sigma (Σ, σ) 62
Eta (H, η) 15,062 Tau (T, τ ) 32,034
Theta (Θ, θ) 7,575 Upsilon (Y, υ) 15,762
Iota (I, ι) 25,593 Phi (Φ, φ) 6,063
Kappa (K,κ) 17,932 Chi (X, χ) 9,155
Lambda (Λ, λ) 13,253 Psi (Ψ, ψ) 904
Mu (M,µ) 13,225 Omega (Ω, ω) 16,043

TABLE I: Counts for each letter in the Ancient Lives dataset.

C. Cropping Algorithm and Consensus Label

The Ancient Lives web interface was used to collect an-
notations on manuscript images that included one or more
characters. To generate a dataset of characters, we designed a
cropping algorithm that was applied to each manuscript image
to extract individual character images. Using the the coordinate
information of each annotation, the distance to the nearest ad-
jacent character (δ) is calculated. Each image was then cropped
by 1.1( δ2 ) pixels including a 10% buffer, from the indicated
location of the character along the vertical and horizontal
dimensions. All cropped images were automatically resized to
70 x 70 pixels. To limit the number of extraction errors (e.g.
extracting markings), a filtering criterion was applied in which
images that had fewer than three annotators in agreement
were removed. As the focus is on alphabetic characters,
symbols and miscellaneous markings were excluded. Target
labels for each image were chosen by taking the consensus
of annotators’ labels (i.e., majority vote). Table I shows the
dataset’s character distribution.

D. The Ancient Lives Dataset

We used the cropping algorithm to produce two versions of
the Ancient Lives dataset for training machine learning models:

• AL-PUB: Includes 195,683 labeled character images
from 5,043 published manuscript images that were used
used in the Ancient Lives web interface.

• AL-ALL: Includes 399,330 labeled character images
from 12,070 published and unpublished manuscript im-
ages that were used in the Ancient Lives web interface.
This includes all images from the AL-PUB dataset.

Our motivation to create two versions of the Ancient Lives
dataset was driven by one issue: scholars working on unpub-
lished and unidentified manuscripts. In order not to reveal
manuscript data still under papyrological research, the AL-
PUB dataset stems from previously published material in The
Oxyrhynchus Papyri Series. Nevertheless, each image in both
dataset versions ideally contains one tightly cropped Greek
character, stored in JPEG format, and can be of a range of
several resolutions. All 24 Greek alphabet characters are rep-
resented in the dataset. Images are sorted into sub-directories
for each character and follows a file-naming convention that
enumerates its associated labels.

IV. METHODS

The goal of our research is to compare and contrast the
performance of learning approaches trained on the Ancient
Lives dataset to state-of-the-art optical character recognition
methods. Here, we describe the various modelling approaches
we explored alongside the OCR tool used as a baseline
measure.

A. Baseline: Tesseract

Tesseract [34] is a state-of-the-art optical recognition soft-
ware tool for extracting text from images. Prior examinations
of Tesseract have demonstrated its effectiveness for character
recognition for extracting text across a multitude of languages
[35], including ancient Greek texts [36], [37]. Further, compar-
ative studies suggest that the effectiveness of Tesseract varies
between contexts (e.g., license plates in greyscale vs. in color)
in contrast to proprietary OCR alternatives (e.g. Transym) [38].
Based on the wealth of prior research reinforcing its utility, we
used the Tesseract engine designed for ancient Greek2 as our
baseline measure. We ran Tesseract on individual character
page segmentation mode with a whitelist consisting solely
of the characters in the dataset. Despite being on single
character mode, Tesseract may return multiple characters. To
remedy this without penalizing Tesseract, we considered any
transcription with the target character present to be accurate.

B. Learning Approaches

We designed and implemented three unique learning ap-
proaches using Tensorflow and Keras that stem from the
broader family of Convolutional Neural Networks (CNNs).
The decision to employ CNNs as an alternative method to
optical character recognition tools was motivated by the wealth
of literature that has demonstrated the success of CNNs as
tools for unique handwritten character recognition scenarios
[39], [40], [41]. Our explored learning approaches include:

1) Standard CNN (CNN-BASE): A standard CNN with a
configurable architecture of convolution layers (e.g., that
control image tensor dimensionality) and max-pooling
layers. This base architecture is both highly configurable
and highly performant for character recognition [39].

2) CNN + XGBoost (CNN-XGB): XGBoost is a machine
learning library which applies gradient boosted trees in
classifying data. When layered with a standard CNN,
XGBoost is able to classify characters with more depth
and greater accuracy using the extracted features from
the CNN. The concept is modified from ConvXGB [42],
with some modifications to hyperparameters tuned.

3) ResNet Model (RESNET): We based this model off
of the Residual Learning framework first introduced
in 2015 [43]. This framework is a modification of the
typical CNN used in image recognition, where a residual
learning component is added to combat problems when
increasing depth. This in turn allows the model to remain
time efficient and accurate at above average depth,
resulting in more detail captured from our character.

2https://ancientgreekocr.org/



(a) CNN-BASE (b) CNN-XGB (c) RESNET

Fig. 5: Visualizations of the grid search for the CNN-BASE, CNN-XGB, and RESNET models over 75 epochs using AL-TUNE.
In contrast to the other models, CNN-XGB produces a smoother curve due to its decision tree design. Best models in blue.

C. Hyperparameter Tuning: Procedure

We optimized our machine learning models by conducting
both a coarse grid search and fine grid search on the standard
list of configurable hyperparameters for convolutional neural
network models [44]. Our initial plan of execution involved the
exploration of multiple values for all hyperparameters across
each model. However, preliminary runs of the hypertuning
process using the AL-PUB and the AL-ALL datasets were
estimated to require a compute time of upward of a year
to execute to completion. To reduce the amount of time
required to conduct an adequate grid search, we conducted a
hypertuning process that utilized a reduced dataset of character
images alongside a smaller number of explored parameters.

1) AL-TUNE: A Reduced Dataset of Character Images:
We randomly sampled 39,924 (10%) character images from
the AL-ALL dataset to create a derivative dataset, which we
henceforth refer to as AL-TUNE. After the sampling process
had completed, we confirmed that character distributions be-
tween the AL-ALL and AL-TUNE datasets were relatively
similar, suggesting that the reduced dataset was statistically
representative of the larger dataset. While representation was
generally maintained, several characters (i.e., Sigma, Psi) were
not well-represented in the reduced AL-TUNE dataset as a
by-product of having significantly lower representation in the
larger AL-ALL dataset.

2) Reduction of Explored Values: A preliminary grid search
using the AL-TUNE dataset with all three model types revealed
that several hyperparameters (i.e., activation function, convo-
lutional kernel size, max pooling kernel size, and momentum)
had minimal effect on the outcome of validation accuracy
across searches. We therefore reduced the range of explored
values for these hyperparameters by setting them to static
values as shown in Table III. The range of explored values for
other hyperparameters was guided by tool documentation and
prior studies that suggest appropriate values for configuring
CNNs [44]. The complete list of explored hyperparameter
values, alongside best-performing value for each hyperparam-
eter for each model, are shown in Table III. The procedure
was executed on a five-node GPU cluster with Intel i9 9820x
processors and dual NVIDIA RTX 2080TI GPUs. All runs
were conducted on individual cluster nodes, and each model
took approximately 48 hours to complete.

D. Hyperparameter Tuning: Results

Figure 5 shows the validation accuracy for all hyperparam-
eter configurations for each model across 75 training epochs.
Throughout the grid search procedure, we observed significant
variance in accuracy across the various model combinations.
We specifically observed that, when the learning rate of a CNN
was greater than 0.001, model accuracy tended to stagnate
around 10%. Additionally, the CNN-XGB model’s accuracy
across 75 epochs tended to be positively correlated with
the maximum tree depth. We chose the best models from
this hyperparameter tuning procedure by averaging the 90th
percentile of the accuracies that were generated by each epoch,
which are shown in Table II. Following the conclusion of the
hyperparameter tuning procedure, the best-performing model
configurations were statically implemented for each model and
subsequently executed on the same cluster system using both
the AL-ALL and AL-PUB datasets.

TABLE II: Accuracy for each model during hypertuning.

Model Val. Accuracy
CNN-BASE 86.7%
CNN-XGB 84.4%
RESNET 80.4%.

Hyperparameter Explored Values Best

C
N
N
-
B
A
S
E

Learning Rate 0.001, 0.01, 0.03, 0.05 0.001
Optimizer Adam, RMSprop Adam
Number of Filters 16, 32, 64, 96 96
Activation Func. RELU RELU
Convolutional Kernel 3x3 3x3
Max Pooling Kernel 2x2 2x2

C
N
N
-
X
G
B Learning Rate (CNN) 0.001, 0.01, 0.1 0.001

Number of Filters (CNN) 8, 16, 32, 64 16
Eta (XGB Learning Rate) 0.01, 0.1, 0.2, 0.3, 0.4 0.1
Max Tree Depth 5, 10, 30, 50, 100, 200 100
Min Child Weight 2, 4, 6, 8, 10 10

R
E
S
N
E
T

Learning Rate 0.001, 0.01, 0.03, 0.05 0.001
Num. of Hidden Layers 2, 4, 8, 16, 32, 50 32
Optimizer Adam, RMSprop RMSprop
Number of Filters 16, 32, 64, 96 96
Activation Function RELU RELU
Kernel Size 3x3 3x3
Momentum 0.9 0.9

TABLE III: An overview of the explored hyperparameter space
alongside the best-performing values for each model.



(a) CNN-BASE (b) CNN-XGB (c) RESNET

(d) CNN-BASE (e) CNN-XGB (f) RESNET

Fig. 6: Accuracy and loss of the CNN-BASE, CNN-XGB, and RESNET models over 75 epochs on the AL-ALL dataset.

V. RESULTS

In this section, we discuss the the results of all four explored
approaches for both the AL-ALL dataset and the AL-PUB
dataset. As Tesseract uses a pre-trained model, we discuss
its accuracy both in aggregate and at the letter level. In
contrast to Tesseract’s discussion of results, we employed
a standrad k-fold cross validation procedure with each of
the three learning approaches. For each of these approaches,
we discuss validation accuracy and loss and reported the
observation accuracy. We conclude this section by revisiting
instances of misclassifications to better understand both why
and how our explored modeling approaches fail.

A. Tesseract

Overall, the pretrained Tesseract Ancient Greek model per-
formed significantly worse than any of the newly trained model
alternatives. Tesseract correctly produced a text transcription
(i.e., that included the expected Greek character) in 45,988
(11.15%) of the character images in the AL-ALL dataset.
Across this same dataset, Tesseract failed to recognize any
text whatsoever in 133,950 character images (33.54%). Mir-
roring the tool’s performance on AL-ALL dataset, Tesseract
correctly produced a text transcription in 20,027 (10.23%) of
the character images in the AL-PUB dataset while failing to
recognize any text at all in 67,186 character images (34.33%).
In examining the recognition effectiveness of individual letter
images in the AL-ALL dataset, we observe that Tesseract was
most effective at recognizing Epsilon images, classifying 4,576
of the 31,581 Epsilon images (14.49%) correctly. In contrast,
we find that Beta images were the most frequently failure case
for Tesseract, classifying only 68 of the 2534 Beta images
(2.68%) correctly.

B. CNN-BASE, CNN-XGB, and RESNET

Table IV shows the average validation accuracy for each of
the three model types for the standard k-fold cross-validation
procedure over 10 iterations. Figure 6 shows accuracy and loss
for model training across each of the three model types.

In general, all three modeling approaches significantly out-
performed Tesseract OCR. Among the three learning mod-
els, the RESNET model achieved the best performing accu-
racy for both the AL-ALL and AL-PUB datasets, achieving
an accuracy of 92.73% and 92.57% respectively. However,
the RESNET model’s accuracy yielded the highest deviation
in performance among the three models. In contrast, the
CNN-XGB exhibited significant variance between datasets,
achieving an accuracy of 80.32% on the AL-PUB dataset and
a substantially higher accuracy of 90.81% on the AL-ALL
dataset. The CNN-BASE model averaged a similarly lower
accuracy of 80.24% on the AL-PUB dataset while achieving a
lower average of accuracy of 80.79% on the AL-ALL dataset.

The RESNET model’s sustained accuracy across datasets
suggests that it is the most reliable model for use in practice.
However, all three approaches demonstrate a significant level
of practical utility as the smallest average of accuracy among
our models is 80.32%, which indicates – in the worst case –
38,510 of the AL-PUB’s 195,683 character images were on
average incorrectly classified.

TABLE IV: Average validation accuracy for all three models
with both datasets across a 10-fold cross-validation procedure.

Model AL-PUB AL-ALL
CNN-BASE 82.24% (σ=0.03) 80.79% (σ=0.01)
CNN-XGB 80.32% (σ=0.63) 90.81% (σ=1.21)
RESNET 92.57% (σ=4.23) 92.73% (σ=3.44)



(a) 66% or Greater Confidence. (b) 33-66% Confidence. (c) 0-33% Confidence.

Fig. 7: Images that were misclassified by RESNET and CNN-BASE with confidence scores and consensus labels in red.

C. Auditing Misclassifications with RESNET and CNN-BASE

To better understand the shortcomings and failures of our
learning approaches, we conducted a high-level examination
of the errors encountered in our best-performing model: the
RESNET model. In assessing the model’s misclassifications,
we observe that the RESNET model incorrectly classified
a total of 29,533 character images (7.4%) out of the total
399,330 character images in the AL-ALL dataset. In com-
parison, the CNN-BASE model incorrectly classified 53,427
character images in the same dataset (13.1%). A total of
17,780 character images were misclassified by both of these
models. Figure 7 shows a collage of examples across these
models with confidence scores and consensus labels in red.

To better understand these misclassifications, we examined
the characters that were misclassified by both the RESNET
model and by the CNN-BASE model. We direct our inves-
tigation toward the 1,405 misclassified character images that
were labeled as the Greek letter Alpha (α) according to our
labeling pipeline shown in Figure 2. Restricting our sample to
confidence levels greater than 33% (i.e., Figures 7a and 7b), we
observe that misclassified character images can be categorized
into two categories: (1) images that were misclassified by the
volunteers or (2) images that are blank or unreadable. Based
on a small sample of 100 characters in this low confidence
group that were labeled as Alpha, but classified as another
Greek character, 97 of the testing set images were found to be
mislabeled. In other words, the RESNET model missed only
three of the characters that were actually Alpha. In manually
reviewing this small sample, we find the RESNET model
to be more effective at classifying image examples of high
ambiguity (e.g., cursive characters) than our research team
members who lack formal training in Greek paleography.

In contrast, the vast majority of misclassified character
images with confidence levels less than 33% (i.e., Figure 7c)
in our sample were blurred, if not simply impossible to read by
our research team’s qualified experts. As shown in Figure 8, we
visually observe that images with higher levels of blurriness
tend to have lower confidence scores in the RESNET model,
suggesting that future experiments may benefit significantly
from an image dataset thresholded on image blurriness. This

observation suggests that the original digitization process,
the cropping algorithm, or the consensus algorithm that was
employed to create the dataset encountered a failure. In other
words, our observation suggests that it was not the RESNET
and CNN models that encountered a misclassification error, but
the prior pipeline stage that was used to produce the dataset.

Based on this preliminary analysis, we estimate that at least
80% of the misclassifications in the RESNET model can be
attributed to labeling errors, stemming from any one of the
pre-processing stages (e.g., cropping, consensus assignment,
or imperfect annotations) shown in Figure 2. Based on this
brief manual examination of this data, only about 1% Alpha
character images were incorrectly classified by the RESNET
model. There were 1,125 Alpha character images that were
misclassified by the RESNET model, but were not misclassi-
fied by the CNN model. When we examine these characters,
we find about 20% of the characters with confidence greater
than 66% were incorrectly classified. For the misclassifications
situated between 33% and 66% range of confidence, about 5%
of the actual Alpha characters were incorrectly classified.

Fig. 8: Blurriness and confidence for all misidentified Alpha
images from RESNET and CNN-BASE in the AL-ALL dataset.



(a) The base interface in which users upload a character image and
make a selection for approaches to character recognition.

(b) An example of Theia’s classification output.

Fig. 9: An overview of Theia’s interface.

VI. THEIA: A WEB UI FOR CHARACTER CLASSIFICATION

Our findings suggest that each of our three machine learning
models substantially outperform the Tesseract OCR engine.
Here, we introduce Theia, a static web interface that allows
members of the research community to easily and intu-
itively reproduce analysis on our approaches. The interface is
specifically designed for nonexperts (e.g., in the humanities)
who lack the necessary technical experience to train and
evaluate machine learning approaches. Theia was built using
the Tensorflow.js and Tesseract.js libraries, both of which

use client-side resources (i.e., GPU using WebGL compute
shaders) to load learning modules and perform model-related
computation. Theia’s front-end centric design facilitates an
affordable hosting model for the academic and research com-
munity by requiring only a standard HTTP server (i.e., for
statically hosted content) to function. Further, Tensorflow.js
maintains embedded support for importing re-usable learning
models such that future research teams can engineer their own
models (e.g., in other language formats), which could be later
incorporated into and hosted within the Theia system. The
Theia system can be found on the project webpage3.

A. User Experience and Web Interface

Theia aims to enable nonexperts with the ability to iden-
tify which of our trained models are most appropriate for
their own project. Theia could, for example, allow a team
of archaeologists to explore the applicability of our models
to a dataset of digitzed ancient Greek manuscripts that are
the product of a digitization initiative that used a unique
digitization technique (e.g., that is dissimilar to the technique
used to digitize the Oxyrhynchus papyri studied in this paper).
Users can use Theia by uploading an image of appropriate size
(70x70), selecting the desired models to use for classification
(e.g. Tesseract, CNN-BASE, CNN-XGB, or RESNET), and
clicking the “Transcribe” button to send the image to the
models for classification. After the models have completed
their classification procedure, the image will be rendered to
the user alongside a list of possible character labels and their
associated classification probabilities. Note that the Tesseract
model may return multiple characters, so there may appear to
be more than one “best” transcription. By engaging in this
process iteratively, users are capable of determining which
model performs best under their specific circumstances. An
overview of Theia’s user experience is shown in Figure 9.

VII. DISCUSSION

Our work demonstrates that learning methods can be use-
fully applied to the task of identifying handwritten characters
in digitized images of ancient manuscripts. In this study’s
context, we designed, implemented, optimized, and explored
the classification effectiveness of three unique approaches for
identifying ancient Greek characters in manuscripts from the
Oxyrhynchus papyri collection. Our comparative analysis with
the Tesseract OCR engine suggests that each of our trained
models were significantly more accurate in classifying all
possible characters images across the ancient Greek alphabet.

An important consideration for interpreting our findings is
the fundamental basis in which the Tesseract engine itself
was trained. Like our three learning approaches, Tesseract
utilizes an embedded learning approach (i.e., LSTM) to fa-
cilitate its optical character recognition [45]. Our decision
to use Tesseract as a baseline measure of performance was
motivated by its widespread utility as an out-of-the-box tool
for effective character recognition. A follow-up study could
explore training Tesseract with the AL-ALL and AL-PUB

3https://utk-pairs.github.io/theia/



datasets to create a custom new Tesseract OCR model, which
could also be made available via Theia. Such a study would
help draw finer conclusions about the performance trade-offs
between the approaches evaluated in our work.

Alongside our comparative analysis, our research introduces
new insights into the applicability of our learning approaches
to scenarios that involve imperfect data. A wealth of re-
search in crowdsourcing and machine learning research have
given ample attention to the development of computational
techniques for identifying reliable annotators, filtering out
unreliable sources of data, and more generally, improving
the quality of crowdsourced data [46], [47], [14]. In con-
junction with new aggregation frameworks for learning from
imperfect annotation data [48], we find evidence that suggests
that our modelling approaches are surprisingly resilient to
imperfect data. Specifically, our audit of misclassifications in
Section V-C highlights that our learning approaches encounter
misclassification errors with character images that may have
been labeled by human annotators incorrectly, algorithmically
assigned an incorrect consensus letter, or simply algorithmi-
cally cropped in an imperfect fashion. Further, we find that
many misclassifications may stem from the dataset’s initial
digitization as described in Figure 2. Our audit introduces a
new frontier for further exploring the effect of these “error-
induced” misclassifications and how their exclusion from the
AL-ALL and AL-PUB datasets may affect model performance.

Lastly, our findings set a compelling benchmark for future
research at the intersection of character recognition, citizen
science, and machine learning for cultural heritage contexts.
Historically, research initiatives for manuscript transcription
retain their data as a by-product of platform policy agree-
ments. By making the AL-PUB dataset publicly available and
introducing Theia into the research community, we believe
that we’ve taken the necessary steps toward establishing a
change of attitude in sharing data, models, and resources
among the research communities that work at this intersection.
Researchers can, for example, extend Theia to datasets of
alternative languages of interest and incorporate new learning
models for widespread use among the community. With the
AL-PUB dataset, machine learning researchers now have a
readily-available alternative to the MNIST dataset [1] that has
been exhaustively used for nearly three decades of research.
In general, these contributions facilitate the re-use, replication,
and extension of our research in the interest of generating new
advances for computing and the humanities alike.

VIII. CONCLUSION

In this paper, we explored the performance of state-of-
the-art optical character recognition tools for print and learn-
ing models engineered with state-of-the-art machine learning
toolkits trained on handwritten inputs. Using Tesseract OCR
as a baseline, we build, optimize, and evaluate three types
of convolutional neural networks that are trained on the
AL-ALL and AL-PUB4 datasets, a collection of images of
handwritten ancient Greek characters that were labeled by vol-
unteers through the Ancient Lives online citizen science

4https://data.cs.mtsu.edu/al-pub

project. We find our best-performing machine learning model
to be 92.57% accurate compared to Tesseract OCR’s 11.15%.
Following our analysis, we present a brief examination of
our models’ shortcomings, introduce the publicly-available
AL-PUB dataset, and, describe Theia, a web-based tool that
democratizes our machine learning models for public use.
We conclude by discussing the promise of our findings for
advancing research at the intersection of machine learning,
manuscript transcription, and the digital humanities.
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