
False Discovery Rate for Homology Searches

Hyrum D. Carroll1, Alex C. Williams1, Anthony G. Davis1, and John L.
Spouge2

1 Middle Tennessee State University
Department of Computer Science

Murfreesboro, TN 37132, United States of America
Hyrum.Carroll@mtsu.edu, acw4a@mtmail.mtsu.edu, agd2q@mtmail.mtsu.edu

2 National Center for Biotechnology Information
Bethesda, MD 20894, United States of America

spouge@ncbi.nlm.nih.gov

Abstract. While many different aspects of retrieval algorithms (e.g.,
BLAST) have been studied in depth, the method for determining the
retrieval threshold has not enjoyed the same attention. Furthermore,
with genetic databases growing rapidly, the challenges of multiple test-
ing are escalating. In order to improve search sensitivity, we propose
the use of the false discovery rate (FDR) as the method to control the
number of irrelevant (“false positive”) sequences. In this paper, we in-
troduce BLASTFDR, an extended version of BLAST that uses a FDR
method for the threshold criterion. We evaluated five different multi-
ple testing methods on a large training database and chose the best
performing one, Benjamini-Hochberg, as the default for BLASTFDR.
BLASTFDR achieves 14.1% better retrieval performance than BLAST
on a large (5,161 queries) test database and 26.8% better retrieval score
for queries belonging to small superfamilies. Furthermore, BLASTFDR

retrieved only 0.27 irrelevant sequences per query compared to 7.44 for
BLAST.

1 Introduction

In response to a query, many database search algorithms (e.g., BLAST [2]) re-
turn a sorted retrieval list of sequences with an E-value assigned to each se-
quence. Typically, each E-value is calculated from a statistical model of irrel-
evant database sequences and approximates the expected number of irrelevant
sequences with a score equal to or better than the one calculated. Many al-
gorithms truncate their retrieval lists at a uniform E-value threshold. We call
this truncation procedure “uniform E-value thresholding”. While many differ-
ent aspects of BLAST have undergone rigorous examination, uniform E-value
thresholding has not had the same scrutiny.

In principle, uniform E-value thresholding controls the count of false posi-
tives in the alignment. If the aligned sequences are few, a fixed error count has a
profound influence on the results; if they are many, they have a negligible influ-
ence. In contrast, FDR controls the proportion of irrelevant (“false positives”),
thereby directly limiting the errors in the results.

2

As computing potential and the sophistication of computer algorithms in-
crease, so has the need to account for multiple testing. For homology searches,
the query is compared against each sequence in the database independently, re-
sulting in multiple tests. Performing multiple tests can give the perception of
a more significant result that what the data supports. FDR methods aim to
control the proportion of irrelevant matches to address the issues that multiple
testing introduces. They are widely used in microarray studies and virtually in
all facets of genomic studies. Additionally, a FDR approach was recently used
to aid in generating the DFam database [13].

Early efforts for managing the false positive rate aimed to control the Family-
wise Error Rate (FWER), the likelihood of making one or more false discoveries.
Due to the instinctive nature of how the FWER is computed, FWER meth-
ods also provide control over the FDR. Four modern and traditionally-accepted
FWER methods are the Bonferroni correction [4], the Holm step-down pro-
cedure [10], the Hochberg step-up procedure [9], the Hommel single-wise proce-
dure [11]. The Bonferroni correction uses a uniform P-value threshold determined
by a user-specified α divided by the total number of performed tests. The Holm
step-down procedure extends the Bonferroni correction by adding the rank of
the ordered P-values to the total number of performed tests in the thresholding
method. Like the Holm procedure, the Hochberg step-up process utilizes the
rank in the thresholding method by looking for the P-value that is less than a
user-specified α divided by the total number of performed tests in addition to
the current P-value’s rank. The Hommel single-wise procedure is similar in that
it looks for the P-value for which all P-values with a higher rank are greater
than a number proportional to alpha. Procedures designed to control only the
FDR, such as the Benjamini-Hochberg procedure [3], are generally less conserva-
tive forms of measurement than FWER methods and never perform worse. The
Benjamini-Hochberg method computes a threshold by multiplying the current
P-value’s rank by a user-specified α and dividing the result by the total number
of performed tests.

In this paper, we explore the performance of BLASTFDR, a BLAST variant
that uses E-values to calculate the FDR. We demonstrate that BLASTFDR
performs better than BLAST, in part by drastically decreasing the number of
irrelevant sequences. The Methods section presents the implementation details of
BLASTFDR; the Results section details our testing procedures and their results.
We conclude with a discussion of BLASTFDR’s applicability.

The C++ source code for BLASTFDR and instructions are available at http:
//www.cs.mtsu.edu/~hcarroll/blast_fdr/.

2 Methods

BLAST accepts a sequence as a query to search for relevant matches in a spec-
ified database. Additionally, an E-value threshold may be supplied to BLAST.
BLAST looks for all relevant matches between that query and the sequences in a

3

database and then applies uniform E-value thresholding by ignoring all matches
with an E-value above the specified value.

BLASTFDR extends version 2.2.27 of NCBI’s BLAST algorithm by replacing
uniform E-value thresholding with a one of the following algorithms: Bonferroni,
Holm’s step-down process, Hochberg’s step-up process, Hommel’s single-wise
process, and Benjamini and Hochberg’s method. The Bonferroni method calcu-
lates a threshold value for each sequence retrieved and considers the first k ranked
sequences as significant that satisfy the following criterion: Pk ≤ α

m , where Pk
is the P-value of the kth sequence and m is the size of the database searched.
Because BLAST relies heavily on E-values instead of P-values, and given that
E-value = P-value * m, we implemented the Bonferroni method as: Ek ≤ α
with Ek being the E-value of the kth sequence. Furthermore, the Holm method
considers matches significant that meet the following criterion: Ek ≤ mα

m+1−k .
Similarly, the Hochberg method takes a different approach by starting at the
least likely match and working toward the best statistical score to consider the
following matches as significant: Ek ≤ mα

m+1−k . The Hommel method also iterates

from the least significant match to find the index k such that: Em−k+j >
jα
k for

j = 1, . . . , k, then uses k to consider the following matches significant: Ek ≤ mα
k .

Finally, the Benjamini-Hochberg method iterates from the match with the best
statistical score and uses the following criterion for significant matches: Ek ≤ kα.

Each match in BLAST is called a high scoring pair (HSP). A database se-
quence can have multiple HSPs. BLAST organizes all of the HSPs according
to the database sequence to which they belong and maintains its internal data
structures sorted by the best HSP per database sequence. This is problematic
for applying the methods above. Consequently, BLASTFDR restructures the
HSPs from sorted by sequence to sorted by individual scores before applying the
threshold.

To determine retrieval efficacy, we leveraged the query sequences in the As-
tral40 database [6]. Each sequence in the Astral40 database has less than 40%
sequence identity to the other sequences. More importantly, each sequence has
been classified into a “superfamily”. We only considered the queries that have at
least one other superfamily member in the database. Matches with the sequences
in the same superfamily are considered relevant matches. To avoid making erro-
neous assignments, we ignore matches that are not in the same superfamily as
the query sequence. For irrelevant matches, we augmented this database 100-fold
with random sequences drawn from the distribution of amino acids residues and
length of sequences found in the original Astral40 database.

We partitioned the augmented database into Training and Test databases. We
sorted the queries by name, and assigned the 5,162 odd sequences to the Training
database and the 5,161 even sequences to the Test database [1]. Additionally, we
randomly selected 103 queries (2%) from the training dataset to use to evaluate
which method to use. We refer to this subset as “Training-sub”.

In this study, we utilize the Threshold Average Precision (TAP) [5] method
as the evaluation criterion for retrieval efficacy. The TAP method calculates
the median Average Precision-Recall with a moderate adjustment for irrelevant

4

Table 1. Average BLASTFDR TAP values using the Training-sub database.

α

Method 0.0005 0.005 0.05 0.5

Bonferroni 0.163 0.170 0.198 0.199

Holm 0.163 0.170 0.198 0.199

Hochberg 0.081 0.088 0.102 0.150

Hommel 0.163 0.170 0.198 0.199

Benjamini-Hochberg 0.168 0.180 0.203 0.184

sequences just before the threshold. TAP values range from 0.0 for a retrieval
with no relevant sequences to 1.0 for a search that retrieves all of the relevant
sequences and only relevant sequences.

To determine the best performing method to use from the list above, we
examined the retrieval performance for each one of them with α = {0.0005, 0.005,
0.05, 0.5} using the training-sub database. From these methods, we adopted
the best performing one as the default threshold method in BLASTFDR. We
then evaluated that method with α = {0.0005, 0.005, 0.05, 0.5} using the entire
training database. Finally, the best performing method with the best performing
value of α was compared against BLAST using the Test database.

3 Results

To evaluate the performance of BLASTFDR, we performed several experiments
involving five different methods to account for multiple testing. We utilized an
augmented version of the Astral40 database (see the Methods section). We
measure the performance in terms of the Threshold Average Precision (TAP)
value.

First, we evaluated BLASTFDR with the following methods for determining
the threshold for matches: Bonferroni correction, Holm step-down procedure,
Hochberg step-up procedure, Hommel single-wise procedure and Benjamini-
Hochberg. For each method, we set α = {0.0005, 0.005, 0.05, 0.5} on the Training-
sub database (see Table 1). Of these methods, BLASTFDR with the Benjamini-
Hochberg method received the best average TAP value of 0.203 and generally
performed better than the other methods. Consequently, we adopted this method
as the default for BLASTFDR. For comparison purposes, BLAST received an av-
erage TAP value of 0.171 on the same database.

On the (full) Training database, we evaluated the same four α values for
BLASTFDR using the Benjamini-Hochberg method (see Table 2). Of these pa-
rameters, BLASTFDR with α = 0.05 received the best average TAP of 0.229

5

Table 2. Average BLASTFDR TAP values using the Training database.

α

Method 0.0005 0.005 0.05 0.5

Benjamini-Hochberg 0.199 0.215 0.229 0.220

Table 3. Average TAP values for BLAST and BLASTFDR.

Database BLAST BLASTFDR

Training-sub 0.171 0.203

Training 0.203 0.229

Test 0.198 0.226

while BLAST received 0.203. Consequently, we adopted this α level as the de-
fault for BLASTFDR.

We evaluated the efficacy of BLAST and BLASTFDR using the 5,161 query
sequences in the Test database (see Table 3). While BLAST received an average
TAP value of 0.198, BLASTFDR earned an average TAP value of 0.226. In terms
of irrelevant sequences, BLASTFDR retrieves an average of only 0.27 irrelevant
sequences per query whereas BLAST retrieves 2,780% more with 7.44 per query.

Furthermore, BLASTFDR performs notably better on datasets that belong
to small superfamilies. Figure 1 illustrates this with the cumulative average TAP
for both BLASTFDR and BLAST for ascending superfamily sizes. For example,
for superfamilies with a size of twelve or fewer members, BLASTFDR has a TAP
of 0.421 and BLAST a TAP of 0.332.

Similar results are obtained by using each of the Astral40 database queries
and searching in the NR database for up to five iterations and then using the
resulting PSSM on the augmented database (data not shown).

4 Discussion

In this article we discussed an observed deficiency in the control of the propor-
tion of irrelevant records in retrieval algorithms. Including too many irrelevant
sequences has been shown to corrupt searches in a genetic database search algo-
rithm [7]. To address this issue, we propose BLASTFDR, an implementation of
BLAST that exercises a false discovery rate method, for finer control over the
percentage of irrelevant sequences.

Using accepted evaluation procedures, BLASTFDR had an average TAP
value 14.1% higher than BLAST on the Astral40 Test datasets. This difference

6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 50 100 150 200 250

C
um

ul
at

iv
e

TA
P

Maximum Superfamily Size

BLAST

BLAST

FDR

Fig. 1. Cumulative BLASTFDR TAP and BLAST TAP versus aggregate superfamily
size for the test database.

is significant given the extremely wide use that BLAST enjoys. Furthermore,
BLASTFDR is particularly appropriate for queries with small superfamily sizes
as evidenced by it obtaining an average TAP value 26.8% higher than BLAST
for superfamilies with sizes up to and including 12. For queries in larger super-
families, if the goal is to assign function to a query, then adequately identifying
the superfamily is sufficient. For example, retrieving 50% of a large superfamily
clearly indicates which superfamily the query belongs. This objective is not cur-
rently captured in retrieval evaluation metrics and may make evaluation values
misleading for large superfamilies.

While BLASTFDR does show significant performance improvements over
BLAST, the increase was not seen for all queries. Figure 2 details the TAP
values for BLAST plotted against the TAP values for BLASTFDR for each of
the 5,161 queries in the Test database. Clearly some improvements can be made
to BLASTFDR to improve its performance.

Traditionally, the Receiver Operating Characteristic (ROCn) [8] method has
served as an evaluation criterion for retrieval efficacy. The ROCn method ig-
nores the threshold implied by a homology search algorithm and truncates a
list of matches after the nth irrelevant match. The resulting list of matches is
plotted with the number of irrelevant matches on the x-axis and the proportion
of relevant matches on the y-axis. A ROCn score is then the normalized area
under the curve. Typically, n = 50. The ROCn method was not suitable for
this study as it generally requires the threshold imposed by the algorithm to be

7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

BL
AS

T F
D

R
 T

AP

BLAST TAP

Fig. 2. TAP results for every query in the test database.

8

artificially modified to allow for n irrelevant matches, thus erasing the affect of
the threshold method.

While we used BLAST as an example in this study, other retrieval algorithms
that use uniform thresholding could also benefit from the implementation of a
FDR controlled threshold. Furthermore, employing more advanced false discov-
ery rate methods, such as the Q-value method [12] could also yield improvements.
Implementation of the Q-value, because it requires the entire distribution of sta-
tistical scores, is inherently challenging for a heuristic algorithm like BLAST.

References

1. Altschul, S., Gertz, E., Agarwala, R., Schäffer, A., Yu, Y.: PSI-BLAST pseudo-
counts and the minimum description length principle. Nucleic Acids Research
37(3), 815–824 (2009)

2. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lip-
man, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Research 25(17), 3389–3402 (1997)

3. Benjamini, Y., Hochberg, Y.: Controlling the False Discovery Rate: a Practical and
Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society,
Series B 57, 289–300 (1995)

4. Bonferroni, C.E.: Il calcolo delle assicurazioni su gruppi di teste. Tipografia del
Senato (1935)

5. Carroll, H.D., Kann, M.G., Sheetlin, S.L., Spouge, J.L.: Threshold Average Preci-
sion (TAP-k): A Measure of Retrieval Efficacy Designed for Bioinformatics. Bioin-
formatics 26(14), 1708–1713 (2010)

6. Chandonia, J., Hon, G., Walker, N., Lo Conte, L., Koehl, P., Levitt, M., Bren-
ner, S.: The ASTRAL Compendium in 2004. Nucleic Acids Research 32(Database
Issue), D189–D192 (2004)

7. Gonzalez, M., Pearson, W.: Homologous over-extension: a challenge for iterative
similarity searches. Nucleic acids research 38(7), 2177–2189 (2010)

8. Gribskov, M., Robinson, N.: Use of receiver operating characteristic (ROC) analysis
to evaluate sequence matching. Computers and Chemistry 20(1), 25–33 (1996)

9. Hochberg, Y.: A sharper Bonferroni procedure for multiple tests of significance.
Biometrika 75(4), 800–802 (1988)

10. Holm, S.: A simple sequentially rejective multiple test procedure. Scandinavian
journal of statistics pp. 65–70 (1979)

11. Hommel, G.: A stagewise rejective multiple test procedure based on a modified
Bonferroni test. Biometrika 75(2), 383–386 (1988)

12. Storey, J.: A direct approach to false discovery rates. Journal of the Royal Statis-
tical Society: Series B (Statistical Methodology) 64(3), 479–498 (2002)

13. Wheeler, T.J., Clements, J., Eddy, S.R., Hubley, R., Jones, T.A., Jurka, J., Smit,
A.F., Finn, R.D.: Dfam: a database of repetitive DNA based on profile hidden
Markov models. Nucleic acids research 41 (D1), D70–D82 (2013)

