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Abstract—In the late nineteenth century, two excavators from
the University of Oxford uncovered a vast trove of naturally dete-
riorated papyri, numbering over 500,000 fragments, from the city
of Oxyrhynchus. With varying levels and forms of deterioration,
the identification of a papyrus fragment can become a repetitive,
long, and exhausting process for a professional papyrologist. The
University of Oxford’s Ancient Lives project aims to accelerate
the identification process through citizen science (or crowdsourc-
ing). In the Ancient Lives interface, volunteer users identify letters
by clicking on a location in the image to designate the presence
of a letter. To date, over 7 million letter identifications from
users across the world have been recorded in the Ancient Lives
database. In this paper, we present a computational pipeline for
converting crowdsourced letter identifications made through the
Ancient Lives interface into digital consensus transcriptions of
papyrus fragments. We conclude by explaining the usefulness of
the pipeline output in the context of additional computational
projects that aim to further accelerate the identification process.

Keywords—crowdsourcing; human computation; big data; pa-
pyrus transcription

I. INTRODUCTION

Over a century ago, two excavators, B.P. Grenfell and A.S.
Hunt, of the University of Oxford, uncovered a vast trove of
papryi, numbering over 500,000 fragments, from the city of
Oxyrhynchus [1]. After transporting the collection back to the
university, the field of papyrology emerged. Grenfell and Hunt
began transcribing and editing the papyrus fragments, and to
this day only a fraction of this vast trove have been published.
Transcribing the collection has not been a simple task as
each fragment suffers a unique level of deterioration with
varying sections of missing papyrus or illegible handwritten
text. Due to the meticulous process of transcribing fragments
with limited information, the rate of manual transcription for
fragments is extremely slow. In order to quicken the process
of transcription, the University of Oxford enlisted volunteers
by establishing Ancient Lives1, a web-based interface for
identifying letters on digital images of papyrus. Users can
log onto the Ancient Lives site and help transcribe ancient
papyrus fragments by clicking on a location in the image

1https://ancientlives.org

and designating the presence of a specific letter. Each letter
identification and its associated characteristics (i.e., x,y coor-
dinates) are stored in a database of user identifications. To date,
over 7 million letter identifications have been been recorded
internationally via the Ancient Lives interface.

In other projects that confront the task of transcribing
historical documents, such as Transcribe Bentham [2], user
transcriptions are given in plain-text with supplemental XML
tags. However, for Ancient Lives, user transcriptions cannot be
given in plain-text due to the absence of certain Ancient Greek
characters and accents on the modern keyboard. In substitution
of the physical keyboard, users use an on-screen keyboard
that has the characters and accents necessary to transcribe any
ancient Greek papyrus fragment. By capturing letter identifi-
cations through click data and the on-screen keyboard instead
of plain-text, the interpretation of the letter identification data
has become a nontrivial task. In order to more easily interpret
the large amount of letter identification data, we present a
new computational pipeline for automating the process of
converting the crowdsourced letter identifications into digital
consensus transcriptions of papyrus fragments. The Methods
section details the design of each pipeline component in
depth. The Evaluation section presents an assessment of each
pipeline component performed by comparing the consensus
letter identifications and consensus line sequences for a set of
fragments in Ancient Lives to the fragment transcriptions and
sequences for the same fragments as they appear in published
Oxyrhynchus (P. Oxy.) volumes. The Results section provides
an interpretation of the results found in each evaluation. The
Conclusion section reiterates on the value of the pipeline and
ends with discussion on future work.

Using the digital consensus transcriptions from the
pipeline, both professional papyrologists and papyrology stu-
dents will be able to more quickly and easily begin the
papyrological process. Despite being designed specifically for
the domain of papyrus, additional classification projects that
are tasked with forming consensus letter identifications or
consensus line sequences from data-click coordinates can make
use of the pipeline architecture.



Fig. 1: The architecture of the computational pipeline used to create consensus transcriptions from user-clicks made through the
Ancient Lives interface.

II. METHODS

The computational pipeline can be separated into two stages
(see Figure 1):

Stage 1: Aggregating User Clicks into Consensus Clicks.
Stage 2: Creating Line Sequences from Consensus Clicks.

The pipeline begins with a collection of plain-text files where
each file contains click-data information for a specific frag-
ment. The pipeline processing requires no human intervention
after the input has been given. Once processing has finished,
the pipeline will yield two files for each papyrus fragment.
The first file contains the relative fragment’s consensus letter
identifications with consensus x,y coordinates. The second file,
which is the final output of the pipeline, contains the relative
fragment’s consensus line sequence that closely resembles
the original papyrus fragment (see Figure 2). The consensus
letter identification components are written in both Matlab and
Python and the line sequence creation component is written
only in Python. All supplemental visualization in Python is
performed with version 2.4.9 of the OpenCV image processing

Fig. 2: An Ancient Lives fragment image (left). A digital
consensus transcription for the same Ancient Lives fragment
(right).

and computer vision package2.

A. Preprocessing Stage

The Ancient Lives interface is directly linked to a MySQL
relational database that houses all transcription information.
For every click a user makes on a digital papyrus image, the
database will store the unique user-id of the ”citizen”, the
user’s relative click location for the letter (i.e., x,y coordinates),
and the citizen’s letter choice in unicode. From the database,
we retrieve all click information and categorize user clicks
into separate files for each fragment. Separating and organizing
the click data by fragment allows us to more easily analyze
click information on the basis of individual fragments. More
specifically, the procedure encourages the detection of strong
dissimilarities between individual user clicks and the consensus
clicks for a given fragment (i.e., an accidental click on the
image).

In some cases, a digital papyrus image is incorrectly ori-
ented in the Ancient Lives database or a user might transcribe a
fragment sideways while maintaining an accurate transcription.
Subsequently, the click-data coordinates that are relative to the
image are also incorrectly oriented. Where applicable, process-
ing rotations in click-data is a necessary step in order to ensure
line sequences are correctly formed. From the Ancient Lives
MySQL database, we also query relevant rotation information
(i.e., the rotation degree used by users to transcribe) for each
fragment. Using the rotation information retrieved from the
database, we determine the correct rotation degree of each
fragment by identifying the most frequently used orientation
among all users during the transcription process. Afterwards,
all click-data undergoes a rotation filter that adjusts x,y coor-
dinates based on the identified orientation degree.

B. Aggregation of User Clicks into Consensus Clicks

Two unique approaches were developed for the task of
aggregating all user clicks for a given fragment to form con-
sensus identifications for letters. We refer to the first approach
as the kernel-based approach. This approach was written in
Matlab and leverages kernel density estimation, a mathematical
approach for inferring the likelihood that a variable will take

2https://opencv.org



(A) (B) (C)

Fig. 3: A visualization of the processing performed by the pipeline using the same Ancient Lives fragment from Figure 2. A)
White dots represent the 1,591 clicks of all users. B) White squares represent calculated consensus clicks from the aggregated
click data of all users for the fragment using the stepwise aggregation approach . C) Green lines represent the regression line
for the nearby consensus clicks.

on a given value, to identify consensus clicks and letters
[3]. The algorithm begins by distributing all user click data
into a number of bins based on the click’s x,y coordinates.
The number of bins is determined by multiplying a user-
specified kernel width by 2. If no kernel width is specified
by the user, the kernel width is assigned a default value of
8. Within each unique bin, the algorithm will identify the
highest kernel density peaks, which represent the presence of a
consensus letter. Once peaks have been identified within each
bin, a filtering function is imposed to prevent duplicates and
eliminate suspected false consensus letters. The x,y coordinates
of the remaining kernel density peaks are clustered and used
to determine the location of consensus letters.

Due to the nature of calculating the kernel density esti-
mation for millions of user clicks, the kernel-based approach
requires a large amount of computational overhead and takes
multiple days to process user click data to yield consensus
letter identifications. In order to hasten the processing time,
a second approach, referred to in this paper as the stepwise
aggregation approach, was developed in Python. This approach
relies on a recently established concept that citizen scientists
who complete more classification tasks have an elevated level
of knowledge and reason in classifying data correctly than
those who complete fewer classification tasks [4]. Based on
the concept that expertise can be represented by experience or
frequency of activity, the algorithm will first identify the user
that has made the highest number of clicks on the fragment and
use their clicks as seed locations for potential consensus letter
identifications. Depending on an unprocessed click’s proximity
to pre-existing seed locations, the remaining user clicks are
either merged with a preexisting seed location or used to
establish a new consensus letter location and added as a seed
location. Once all user clicks have been processed, a centroid,

or center point, of each agglomeration of clicks is identified
and recorded as a consensus letter (see Figure 3B).

C. Creation of Line Sequences from Consensus Clicks

Using the consensus letter identifications from the previous
stage, the line sequence creation component will attempt to
form line sequences that closely resemble the text presented
in the digital image of the papyrus fragment. The input of
line sequence creation component is a text file containing a
list of x,y coordinates with associated Greek characters. The
output of the line sequence creation component is a text file
containing a line sequence, or string, composed of all of the
characters that appear in the input file.

The algorithm begins by sorting all clicks into a list based
on the y coordinate. Beginning at a y-coordinate of 0 and
ending at a y-coordinate equal to the height of the relative
fragment’s digital image, the algorithm searches the sorted
y-coordinates and identifies the presence of lines based on
gaps of vertical space between neighboring y-coordinates (see
Figure 3C). When a line is identified, the y-coordinate is added
to a list of line regions. After each click has been grouped into
a line region based on its relative x,y coordinate, the best fit
line, or regression line, for each line region is calculated. In
addition to the equation, the average space between neighbor-
ing line regions is calculated. Using the equation of the best
fit line as a reference, a second pass of all y-coordinates is
made in order to ensure that each letter was categorized in the
correct line region. If an x,y coordinate is not within half of
the calculated average space between neighboring line regions
from the relative line’s median y-coordinate, the coordinate
is categorized into another line region. After the second pass
of y-coordinates has finished, each line region is sorted by
the x-coordinate in order to ensure characters appear in the



same order they appear on the papyrus. After the regions have
been sorted by x-coordinate, the regions are concatenated into
a single string, which represents the line sequence for the
fragment.

There are two types of styles of line that are presented in
papyrus. The first style is parallel where lines are written in
straight, distinct, and predictable lines and are equidistant from
neighboring lines. The second style is curvilinear where lines
are written in the shape of an arc and are unpredictable in
direction. For most papyrus fragments with curvilinear lines,
identifying a consistent amount of vertical space between line
regions is nontrivial. As a result, the described approach could
produce duplicate lines by identifying multiple line regions
from a single curvilinear line due to incorrect measurements of
vertical space between line regions. In order to filter duplicate
line regions, a final post-processing stage will remove a line
region if it shares 70% or more identity with its neighboring
line region.

III. PIPELINE EVALUATION

In this evaluation, we examine the efficacy of Stage 1 and
Stage 2 separately. In addition to fragments that have yet to
be transcribed, a group of published fragments with known
transcriptions were deposited into Ancient Lives in order to
make assessing the effectiveness of each pipeline component
possible. Given that each is supplied with the same set of
click data, both the kernel-based approach and the stepwise
aggregation approach are scrutinized on the ability to correctly
classify a letter by comparing consensus click data to the click
data of published fragments given by a professional papyrolo-
gist. Similarly, the performance of the line sequence creation
component is evaluated based on the similarity between line
sequences produced by the component and digital fragment
transcriptions as they appear in a published P. Oxy. volume.

A. Evaluation of Consensus Letter Identifications from Users

We randomly selected 54 published fragments from the
Oxyrhynchus collection to be used as evaluation criteria for
measuring the accuracy of consensus letter identifications
from both the kernel-based approach and stepwise aggregation
approach in comparison to known letter identifications that
appear in P. Oxy. volumes. In this assessment, the default
kernel width value of 8 is used in the kernel-based approach.
In order to evaluate on the basis of user clicks made by citizen
scientists, clicks made by professional papyrologists have been
removed from the click data set used to make consensus
letter identifications. Each fragment was categorized based
on handwriting style and legibility into one of the following
groups: non-cursive, semi-cursive, and cursive. We utilize three
established metrics, precision, recall, and F1 score [5], for
determining the classification performance of each approach.
Precision is calculated by dividing the number of correct letter
identifications by the number of total letter identifications in
the consensus transcription. Recall is calculated by dividing
the number of correct letter identifications by the total number
of letter identifications in the relative fragment’s P. Oxy.
transcription. Both precision and recall are combined into a
composite metric, the F1 score. The equation to calculate the
F1 score for an individual fragment is:

F 1 = 2× P ×R

P+R
(1)

where P and R are respectively the precision and recall of the
fragment’s click data. A F1 score of 0.0 can be interpreted as
an approach correctly classifying next to none of the letters
while a F1 score of 1.0 can be interpreted as an approach
correctly classifying most or all of the letters.

B. Evaluation of Line Sequence Creation Component

In this evaluation, the accuracy of the line sequence cre-
ation component is examined by supplying the component with
professionally curated click-data, where each click represents
a correct letter at the correct relative x,y coordinate. From the
same set of fragments used in the previous evaluation, a subset
of 41 fragments were selected to be used as evaluation criteria
to examine the sequence similarity of consensus line sequences
produced through the line sequence creation component and
the published digital transcription of the same fragment. All 41
fragments were chosen on the basis that a digital transcription
exists for the fragment. For the remaining 13 fragments in
the set of fragments used in the previous evaluation, a digital
transcription does not exist. Each fragment with a digital
transcription was categorized as having either parallel lines
or curvilinear lines. Of the 41 fragments, 30 were categorized
as having parallel lines and 11 were categorized as having
curvilinear lines. The edit distance, or Levenshtein distance [6],
is employed as a metric to measure the similarity between the
transcription produced through the line sequence component
and the transcription that appears in a P. Oxy. volume. An edit
distance of 0 represents complete identity between two strings
(i.e., an exact match). For an edit distance that is greater than
0, at least one insertion, deletion, or substitution was required
for one sequence to resolve to the other.

IV. RESULTS

A. Consensus Letter Identification Evaluation Results

The results of the evaluation for Stage 1 suggest the
stepwise aggregation approach produces a higher level of
accuracy for correctly determining consensus letter identifica-
tions than the kernel-based approach, especially for fragments
with cursive handwriting (see Table I). The small difference
in performance between the kernel-based approach and the
stepwise aggregation approach can be explained by how each

Handwriting Average Kernel- Average Stepwise
Style Based F1 Score Aggr. F1 Score

Non-cursive (34) 0.65 0.67
Semi-cursive (12) 0.64 0.68

Cursive (8) 0.61 0.69
Aggregated (54) 0.64 0.67

TABLE I: Average F1 scores of consensus letter identifications
in each handwriting style from both the kernel-based approach
and stepwise aggregation approach.



Fig. 4: A Precision-Recall graph that visualizes how the
precision and recall of each consensus letter identification from
both approaches align with respect to calculated F1 scores in
Table I.

method extrapolates on user clicks. In the stepwise aggregation
approach, every user click is used to create the consensus
click data set for a fragment. In the kernel-based approach,
every user click is also used to create the consensus click
data set, but in order to prevent duplicate letter identifications,
the list of suspected consensus clicks undergoes a filtering
process, which has the potential to remove true-positive letter
identifications and decrease identification performance. The
difference in accuracy of correctly classifying true-positives
and true-negatives can be visualized with the precision and
recall (see Figure 4). In addition to producing a higher level of
accuracy, the stepwise aggregation approach has an accelerated
execution time in comparison to the kernel-based approach.
The total execution time for the stepwise aggregation approach
is currently about fifteen minutes while the execution time or
the kernel-based approach spans a few days.

B. Line Sequence Creation Component Evaluation Results

The results of the evaluation for Stage 2 suggest that
the line sequence creation component is effective at creating
sequences correctly for most fragments with parallel lines (see
Table II). Of the 30 fragments categorized as having parallel

lines, eleven sequences created through the line sequence com-
ponent were exact matches to their digital transcription coun-
terpart. Of the 11 fragments categorized as having curvilinear
lines, only one sequence created through the line sequence was
exactly matched to its digital transcription counterpart. There
is a clear distinction between the component’s effectiveness
for fragments containing parallel lines and the component’s
effectiveness for fragments containing curvilinear lines. The
difference in performance can be explained by the current
approach’s inability to consistently determine which letters
belong to which line in fragments with curvilinear lines.

V. CONCLUSION

In order to more easily interpret the large amount of letter
classification data from over a million users, we presented a
new computational pipeline for translating millions of user-
clicks on digital images of Ancient Greek papyri to digital,
consensus transcriptions that closely resemble the format of the
original papyrus. Both professional papyrologists and student
papyrologists can utilize the digital consensus transcriptions
produced through the pipeline to more quickly examine, edit,
and publish fragments with confidence. Despite being designed
specifically for Ancient Greek papyrus fragments, classifica-
tion projects that share the task of forming either consensus
letter identifications or consensus lines of text from coordinate
click-data can take advantage of the computational pipeline.

By engineering a pipeline for interpreting the millions
of user-clicks from Ancient Lives, we are dramatically re-
defining how professional papyrologists and scholars interact
with ancient papyri. Typically, a papyrologist could spend
days, weeks, or months manually transcribing multiple papyrus
fragments. Both the pipeline and the Ancient Lives project
leverage the work of citizens in order to help the papyrologist
more quickly transcribe and evaluate fragments. There are a
number of computational systems that have already made use
of the pipeline’s output and share the goal of bringing ease to
the transcription process. Greek-BLAST [7], for example, is
a variant of BLAST, a popular genetic sequence alignment
tool, designed specifically for suggesting identifications for
literary papyrus fragments. Consensus transcriptions of literary
fragments made through Ancient Lives can be supplied to
Greek-BLAST directly as input and quickly aligned with
matches in Ancient Greek literary manuscript databases (i.e.,
The Perseus Digital Library [8]). Additionally, collaborators
at the University of Minnesota have developed a web-based
tool for quickly curating the digital consensus transcriptions
produced from the computational pipeline. Curated consensus
transcriptions are stored in a database that will later be used
for data mining purposes. Lastly, the consensus transcriptions

Line Style Average Fragment Length Average Edit Distance Error Ratio
Parallel (30) 43.7 6.8 15.6%

Curvilinear (11) 234.0 83.3 35.6%
Aggregated (41) 94.7 26.1 27.6%

TABLE II: Average fragment lengths, average edit distances, and error ratios for the 41 fragments used in the line sequence
creation component evaluation. Error ratios are calculated by dividing the average edit distance by the average fragment length.



made through Ancient Lives will be the basis for many
fragments that will be further studied, edited, and published
in The Oxyrhynchus Papyri volume series and Proteus, a
new interactive, web-based platform that leverages advanced
computational methods and techniques to both the study and
analysis of ancient texts and the creation of next-generation
digital editions.

A. Future Work

A key component of future work is improving the line
sequencing stage of the pipeline. For fragments written in a
curvilinear manner, forming lines is a nontrivial task. We will
investigate measures to help identify the presence of curvilin-
ear lines and how the accuracy of the existing approach for
developing line sequences can be improved. A final re-design
of the pipeline will take place after additional classification
information (i.e., methods for identifying line information or
missing papyrus) is added to the Ancient Lives framework.
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